・モデルから出発して演繹的推論を行なって,これまで確かめられていないことを予測する。ここで,演繹的推論とは,論理式「AならばBである」の集まりについて,排中律「Aであることは,非AであることとAと非Aの間にあることを意味しない」と推移律「AならばBかつBならばCであるとき,AならばCである」を用いて推論することをいう。この推論は一本道で枝分かれはない。
・この予測を確認できる観測・実験を行なう。
・予測と観測・実験結果が誤差の範囲で一致すれば,モデルは偽でなく「モデルは検証された」とする。
・予測と観測・実験結果とが誤差の範囲を超えて一致しないとき,「モデルは反証された」とし「モデルは偽である」として,反例を取り込んでモデルを作り直して予測に戻る。
この枠組みを「モデル形成とその検証のループを回す」方法,あるいは簡潔に「モデル検証法」または「仮説検証法」という。
市川惇信 (2008). 科学が進化する5つの条件 岩波書店 pp.12-13
PR